CABLES DE COBRE

Actualmente casi todo el cable de cobre en redes Ethernet es el de pares trenzados sin apantallar (UTP, Unshielded Twisted Pair); más raramente se emplea el de pares trenzados apantallado (STP,Shielded Twisted Pair) o también cable coaxial. Esto no se debe a las virtudes del cable UTP, que es peor que el STP o el coaxial para transmitir datos debido a su elevada atenuación a altas frecuencias,sino a la necesidad de utilizar un cable de bajo costo que permita un cableado integral de voz y datos.

Las normativas de cableado estructurado más conocidas son la TIA/EIA 568-A [1] y la ISO/IEC 11801 [2]. Las dos coinciden en lo esencial, pero tienen pequeñas diferencias.Cuando se diseña un cableado es posible y conveniente cumplir ambas simultáneamente, ya que de esta forma se asegura la máxima compatibilidad con los fabricantes. Una característica común a todos los sistemas de cableado estructurado es que la longitud máxima del enlace con cable UTP es de 100m.

La norma TIA/EIA 568-A clasifica los cables UTP en categorías de acuerdo con sus características para la transmisión de datos 1, las cuales vienen fijadas fundamentalmente por la densidad de trenzado del cable (número de vueltas por metro) y los materiales utilizados en el recubrimiento aislante. Conforme sube la categoría aumenta la densidad de trenzado, disminuye la atenuación y mejora la propagación de señales de alta frecuencia. Por otro lado, dado un cable cuanto mayor es la frecuencia mayor es la atenuación. Para cada categoría la norma especifica valores límite (máximos o mínimos, según el caso) de la atenuación y varios otros parámetros característicos del cable para un rango de frecuencias hasta una considerada la máxima utilizable para esa categoría. En la tabla 1 aparecen las categorías actualmente especificadas o en curso de especificación, y las frecuencias máximas correspondientes.

Tabla 1: Categorías de los cables de pares trenzados

Realmente las categorías 1 y 2 no forman parte de la norma, las hemos puesto por completar la tabla (podríamos decir que son ‘sub-normales’); de hecho no son UTP en sentido estricto, ya que carecen de trenzado. Actualmente están aprobadas las categorías 3, 4 y 5, y esta a punto de aprobarse la 5E (Enhanced) [3] que en realidad no es una categoría nueva sino una versión mejorada de la 5, puesto que no modifica la frecuencia máxima (aunque sí cambia los valores límite de los parámetros, e incluso añade otros nuevos).

Las normas evolucionan con el tiempo, y con ellas la especificación de las categorías, por lo que cuando se dice que una instalación está certificada categoría 5,por ejemplo, es importante saber la versión de la norma utilizada en la cetificación. Las versiones actualmente vigentes de las normas TIA/EIA 568-A [1] e ISO/IEC 11801 [2] son de 1995. Una instalación certificada con referencia a una versión anterior podría no ser conforme con la norma actualmente vigente.

Hoy en día los cables más utilizados son categoría 5 y 5E; la diferencia de precio entre ambos es pequeña, y los costos de instalación similares, por lo que en instalaciones nuevas esaconsejable utilizar cable 5E. El nuevo estándar de Gigabit Ethernet en cable UTP, 1000BASE-T [4],cuya aprobación se prevé ocurrirá en septiembre de este año, aconseja el uso de cable 5E3. Aun en el caso de no prever utilizar estas velocidades las prestaciones superiores del cable 5E dan un mayor margen de seguridad en el funcionamiento normal. Otro entorno donde es conveniente poner cable de altas prestaciones es en enlaces ATM de 155 Mb/s sobre cable UTP, que en algunos aspectos(por ejemplo frecuencia máxima de la señal) supera incluso los valores utilizados por 1000BASE-T. Muchos cables 5E superan ampliamente lo requerido por la norma, hasta el punto de que algunos fabricantes garantizan el funcionamiento de sus cables a distancias mayores de lo que permite el estándar; por ejemplo en cable categoría 5 la distancia máxima es de 150 y 100m según las normas 10BASE-T y 100BASE-TX,respectivamente; sin embargo el cable BICC Gigaplus garantiza distancias de 185 y 140m, respectivamente.

Mientras que la especificación de la categoría 5E esta ya casi terminada, las categorías 6 y 7 se encuentran aun en discusión,y las últimas previsiones son de que su aprobación aun puede tardar varios años. Se estima que la categoría 6 llevará al límite las posibilidades del cableado UTP, por lo que será necesario utilizar cable STP para la categoría 7. Es de esperar que el cable categoría 6, cuando se produzca en grandes cantidades,sea solo un poco más caro que el de categoría 5 o 5E (como ocurre actualmente con la categoría 5 frente a las 3 y 4); en cambio el elevado costo de fabricación e instalación del cable categoría 7 STP, comparable ya al de la fibra óptica, lo hace poco atractivo para el usuario final, por lo que es previsible que cuando se aprueben las nuevas categorías el cable predominante sea el categoría 6.

Algunos fabricantes anuncian ya cables como de categoría 6. Aunque es evidente que son mejores que el 5E, dan un mayor margen de seguridad a la instalación y es probable que en efecto cumplan con las especificaciones categoría 6 cuando finalmente se aprueben, la situación a este respecto es aun muy incierta. Además la diferencia de costo es importante, ya que se fabrican en cantidades relativamente pequeñas.Por otro lado, podría suceder que no aparezca un estándar Ethernet que aproveche el mayor ancho de banda de este cable, como ocurrió en su día con la categoría 4, que en Ethernet tiene un uso equivalente a la categoría 3 a pesar de sus mayores prestaciones.En mi opinión es aun pronto en general para decantarse por este tipo de cable.

A la espera de que se aprueben las normativas correspondientes a los cables de categorías superiores el integrador Anixter ha definido unas categorías propias denominadas niveles. La clasificación actualmente vigente, definida en 1997 y conocida como Levels’97, especifica tres niveles denominados 5, 6 y 7. El nivel 5 corresponde con pequeñas mejoras a la categoría 5. El nivel 6 supone una mejora importante respecto a la categoría 5, superior incluso a la 5E, y coincide con lo que algunos fabricantes denominan categoría 5 de gama alta o 5+. Por último el nivel 7 se aproxima a la futura categoría 6. Desgraciadamente muchos cables interesantes no han sido clasificados de acuerdo con los niveles de Anixter. Para más detalles sobre estetema se puede consultar la ref.[5].

La clasificación en categorías, además de aplicarse a cables aislados se aplica a instalaciones; a menudo sucede que una instalación hecha con cable categoría 5 no puede funcionar al máximo rendimiento debido a que la instalación no fue hecha con el suficiente cuidado: errores comunes son por ejemplo destrenzar una longitud excesiva en los conectores, apretar demasiado las bridas o doblar excesivamente el cable. En principio podría ser que una instalación categoría 5 cumpla sin más los requisitos de la categoría 5E. Para saberlo habría que recertificar toda la instalación de acuerdo con la norma 5E; alternativamente se puede aplicar una técnica de muestreo, por ejemplo probar un 10% de los cables (preferiblemente los más largos) y extrapolar los resultados, o certificar en particular aquellos cables en los que vayamos a conectar equipos Gigabit Ethernet. Se estima que entre un 5 y un 10% de las instalaciones categoría 5 no soportarán Gigabit Ethernet, debido fundamentalmente a problemas relacionados con los conectores. En [6] se especifica el procedimiento a seguir para resolver ese tipo de problemas.

Incluso en el caso de que un enlace no cumpla la categoría 5E es posible que la instalación funcione correctamente con 1000BASE-TX,ya que influyen múltiples factores tales como la calidad de los transceivers utilizados en los equipos. La mejor forma de saberlo es hacer la conexión, provocar un flujo masivo de tráfico entre los dos equipos, y calcular la tasa de errores obtenida, también llamada BER (Bit Error Rate). Para calcular la BER debemos dividir el número de tramas recibidas con CRC erróneo por el número total de bits recibidos (esta información la podemos obtener por ejemplo de las estadísticas de un conmutador); solo se debe considerar el tráfico en el lado receptor, puesto que los equipos nunca detectan errores de CRC en lo que transmiten. Según el estándar la BER no debe ser superior a 10-10 (es decir un bit erróneo cada 1010 bits transmitidos). Si obtenemos un valor superior debemos revisar la instalación, mejorándola o rehaciéndola en caso necesario hasta conseguir un BER menor. Para que el resultado sea representativo deberemos transmitir al menos 10 11 bits (12,5 Gbytes). Para comprobar el enlace en ambos sentidos habría que realizar la prueba primero transmitiendo desde un equipo y luego desde el otro. Estas pruebas, aunque son la mejor verificación del correcto funcionamiento de la red, estrictamente hablando solo son válidas para la configuración concreta de equipos y cables con los que se prueba; no todos los transceivers tienen la misma tolerancia al ruido, por lo que en situaciones que se encuentren fuera de normas podrían presentarse problemas al cambiar los equipos conectados.

Los medios más utilizados hoy en día son 10BASE-T y 100BASE-TX. La tabla 2 resume los medios físicos de cobre más comunes en Ethernet a 10, 100 y 1000 Mb/s.

Según las normativas de cableado estructurado la longitud máxima de un enlace es de 100 m, pero la norma 802.3 permite un alcance de 150 m cuando se utiliza 10BASE-T sobre cable cat. 5.

Tabla 2: Medios físicos de cobre más comunes en Ethernet

Fibras ópticas

En Ethernet a 10 Mb/s sobre fibra óptica (10BASE-FL) se utiliza primera ventana (850nm) por ser la que permite emplear optoelectrónica más barata; con los equipos estándar se consigue un alcance de 2 Km. En cambio Fast Ethernet (100BASE-FX) utiliza segunda ventana (1300nm) que es la empleada en FDDI4;la mayor velocidad requiere menor atenuación, lo cual se consigue cambiando de ventana para mantener el alcance máximo en 2Km; a cambio la optoelectrónica es bastante más cara (razón por la cual la relación de costos fibra/cobre es mayor en Fast Ethernet que en Ethernet). Si se mira directamente a un emisor 10BASE-FL se aprecia una luz roja tenue, ya que la primera ventana se encuentra muy cerca del espectro visible (400-760nm). En cambio en 100BASE-FX no se aprecia ninguna luz puesto que la segunda ventana se encuentra bastante más lejos de la zona visible.

Aunque los estándares 10BASE-FL y 100BASE-FX contemplan únicamente fibra 62,5/125 la mayoría de los equipos pueden funcionar también con fibra 50/1255. Sin embargo el uso de fibra 50/125 provoca una pérdida de señal que puede llegar a ser de 5 ó 6 dB debido al desacoplamiento entre el transceiver y la fibra6; por tanto el uso de fibra 50/125 puede reducir la distancia máxima efectiva en Ethernet o Fast Ethernet, y su uso está desaconsejado. Aun menos aconsejable es tener en un mismo trayecto varios cambios de diámetro, ya que las pérdidas producidas en cada transición se irán acumulando.

Tradicionalmente las redes locales, al cubrir distancias pequeñas, han utilizado fibras multimodo con emisores LED (no láser) de primera o segunda ventana. En cambio las redes de área extensa utilizan emisores láser de segunda, o incluso tercera ventana (1510 nm), que con fibras monomodo permiten llegar sin repetidores intermedios a distancias de hasta 120 y 160 Km respectivamente; en este caso el mayor costo de la optoelectrónica se ve compensado por la reducción en equipos regeneradores de la señal. Debido a su pequeño diámetro las fibras monomodo son especialmente apropiadas para el uso de emisores láser que generan un haz de luz muy estrecho.

Además de su menor alcance los LEDs también tienen una limitación en velocidad; pueden llegar como máximo a 400-600 Mbaudios7. Para velocidades superiores es preciso utilizar emisores láser, aun cuando por distancia no sea necesario su uso, porque permiten enviar pulsos más cortos. Esta situación se planteó por primera vez en Fibre Channel, que transmite a velocidades de hasta 1062 Mbaudios. El problema era que la luz láser requiere normalmente fibras monomodo, cosa que habría limitado mucho la utilización de Fibre Channel, ya que estas fibras no están disponibles normalmente en los edificios. La propagación de luz láser en fibra multimodo presenta problemas que limitan seriamente su alcance. En Fibre Channel se optó por restringir el uso de fibra multimodo a distancias muy cortas, sin investigar a fondo el problema, ya que para distancias mayores se utilizaba fibra monomodo. Además en Fibre Channel se utiliza fibra de 50/125 únicamente ya que presenta menos problemas de propagación con la luz láser que la 62,5/125 (lo cual es hasta cierto punto lógico puesto que su diámetro es más parecido al de la monomodo).

En Gigabit Ethernet los pulsos se transmiten a una velocidad de 1250 Mbaudios, por lo que es necesario utilizar láser. Para aumentar la versatilidad se decidió incluir los dos tipos de fibra multimodo, 50/125 y 62,5/125, y extender todo lo posible el alcance, tanto en primera como en segunda ventana (Fibre Channel en multimodo utilizaba primera ventana únicamente). Las primeras experiencias de transmisión de Gigabit Ethernet en fibras multimodo pusieron de manifiesto un fenómeno nuevo denominado ‘retardo del modo diferencial’ que tiene el efecto de ensanchar los pulsos luminosos de forma proporcional a la distancia recorrida; esto limita el alcance, ya que a partir de una cierta distancia un pulso se solapa con el siguiente. La búsqueda de una solución a este problema retrasó unos meses la aprobación del estándar respecto a lo inicialmente previsto. Finalmente se aprobaron dos sistemas denominados 1000BASE-SX (S de ‘Short wavelength’, o sea primera ventana), que funciona en fibra multimodo únicamente (50/125 ó 62,5/125), y 1000BASE-LX (L de ‘Long wavelength’, segunda ventana) que puede utilizar multimodo (ambos tipos) o monomodo. El alcance depende como es lógico del tipo de fibra y la ventana utilizados.

Los emisores láser de primera ventana emplean una técnica denominada VCSEL (Vertical Cavity Surface Emitting Laser) muy similar a la de los lectores de discos compactos, por lo que resultan muy baratos de fabricar. Desgraciadamente aún no existen emisores láser VCSEL de segunda ventana, por lo que para 1000BASE-LX hay que emplear otras técnicas bastante más costosas como el láser Fabry-Perot, con lo que las interfaces LX resultan unas tres veces más caras; a cambio la segunda ventana permite generalmente un mayor alcance. Con 1000BASE-LX sobre fibra monomodo se puede llegar según el estándar a 5 Km.

Los emisores láser VCSEL de primera ventana son tan baratos de fabricar que pueden resultar competitivos frente a los emisores no láser de segunda ventana, utilizados por ejemplo en Fast Ethernet (100BASE-FX). Las propuestas presentadas al comité IEEE 802.3 de crear un grupo de trabajo que elabore un estándar Fast Ethernet en primera ventana no han prosperado, por lo que los interesados han creado un grupo de trabajo en el seno de la TIA denominado la Short Wave Length Alliance (SWLA) para elaborar este estándar, que se denomina 100BASE-SX. Es de esperar que una vez aprobado por la TIA sea adoptado por el IEEE. Actualmente ya existen en el mercado productos 100BASE-SX, y su costo es aproximadamente la mitad que el de los 100BASE-FX. El alcance propuesto es de unos 500m. Sin embargo, a pesar de la aparición de los emisores VCSEL las interfaces en fibra seguirán siendo, a todas las velocidades, más caras que el cobre puesto que requieren componentes adicionales.

La tabla 3 resume las principales características de todos los medios de fibra óptica actualmente utilizados en Ethernet, y sus alcances según el estándar.

Tabla 3: Medios de transmisión en fibraóptica utilizados en Ethernet

Tabla 3: Medios de transmisión en fibraóptica utilizados en Ethernet

Es importante mencionar que la práctica, utilizada frecuentemente en 10BASE-FX, de ver directamente con el ojo un emisor o una fibra óptica para saber cual es el lado transmisor se convierte en algo peligroso con Gigabit Ethernet ya que existe el riesgo de que la retina reciba luz láser, que puede producir un daño irreversible. Además, a diferencia de lo que ocurría en 10BASE-FL, incluso funcionando en primera ventana la luz láser resulta invisible ya que tiene toda su potencia concentrada en una banda de solo 0,85nm de anchura (la señal en 1000BASE-SX puede tener una longitud de onda en el rango de 770 a 860 nm).

Gigabit Ethernet y el retardo en modo diferencial

A diferencia de lo que sucede con 10BASE-FL o 100BASE-FX, donde el alcance viene limitado por la atenuación de la señal, en Gigabit Ethernet sobre fibra multimodo la limitación la impone el efecto antes mencionado del retardo en modo diferencial. Este fenómeno consiste en que cuando el haz láser llega a la fibra, al ser ésta apreciablemente más ancha que el haz se generan haces secundarios que van ërebotandoí por las paredes al avanzar por la fibra. Este rebote no ocurre exactamente por igual para todos los rayos, por lo que unos realizan un trayecto un poco más largo que otros, de forma que el pulso de luz se ensancha ligeramente8. El ensanchamiento es proporcional a la distancia; por otro lado, a mayor velocidad de transmisión menos ensanchamiento puede tolerarse, ya que un pulso se solaparía con el siguiente. El efecto es por tanto proporcional a la distancia e inversamente proporcional a la frecuencia de los pulsos, es decir a la velocidad de transmisión. Existe un parámetro característico de las fibras que mide esta limitación, que se conoce como ancho de banda modal o simplemente ancho de banda, y se mide en MHz*Km. Por ejemplo con un ancho de banda de 1000 MHz*Km podríamos en principio enviar un millón de pulsos por segundo a una distancia de 1 Km, medio millón de pulsos a 2 Km, o dos millones a 500 m.

Tres son los factores principales que influyen en el ancho de banda de una fibra:

El diámetro del núcleo: el ancho de banda es menor cuanto mayor es el diámetro del núcleo, ya que el pulso va más ëanchoí y rebota más. Por esto en general la fibra de 62,5/125 tiene menor ancho de banda que la de 50/125. El retardo en modo diferencial no se da, o es despreciable, en fibras monomodo (de hecho el parámetro ancho de banda modal ni siquiera se especifica normalmente en las fibras monomodo).

La longitud de onda: el ancho de banda es mayor cuanto mayor es la longitud de onda, ya que el haz viaja más ëajustadoí en la fibra. Por tanto una fibra tiene mayor ancho de banda en segunda ventana que en primera.

La calidad de la fibra. Los procesos de fabricación permiten reducir hasta cierto punto la creación de haces secundarios, con lo que el ensanchamiento se reduce. Las fibras construidas con mayores controles de calidad tienen un ancho de banda mayor. En la práctica cada lote tiene (y cada tramo) tiene un valor característico, que suele estar recogido en el libro de red de la instalación.

Los fabricantes suelen especificar un ancho de banda mínimo garantizado en cada ventana para cada tipo de fibra. El uso de fibras con un ancho de banda mayor permite llegar a distancias mayores en Gigabit Ethernet. Hoy en día los valores exigidos por los estándares TIA/EIA e ISO/IEC son ampliamente superados por las fibras de alta calidad, por lo que en la elección de una fibra que se prevea utilizar en Gigabit Ethernet es conveniente elegir la de mayor ancho de banda posible, no conformándose con que cumpla los estándares habituales. El encarecimiento que esto supone en el costo total de la instalación es normalmente despreciable. Con un ancho de banda mayor es posible utilizar emisores 1000BASE-SX en más situaciones, no teniendo que recurrir tanto a los de segunda ventana (1000BASE-LX) más caros. La tabla 4 muestra a modo de ejemplo los anchos de banda según los estándares EIA/TIA e ISO/IEC,así como los valores garantizados de algunas de las mejores fibras del mercado.

Tabla 4: Ancho de banda en 1ª y 2ª ventanas de los estándares y algunas fibras de alta calidad; entre paréntesis aparece el alcance máximo en Gigabit Ethernet en cada caso

Aunque hay una correlación entre el ancho de banda y la distancia máxima la proporción no es lineal, por lo que no es fácil extrapolar. Además a distancias mayores habrá que cuidar de no superar el valor máximo de atenuación, que ha sido fijado con criterios muy severos [7]. En todo caso la prueba definitiva es realizar la conexión y hacer un seguimiento de la tasa de error o BER siguiendo la misma técnica que hemos descrito para el caso de cable de cobre 9. En caso de problemas habría que revisar la instalación y eventualmente pasar a un medio de mayor alcance (de SX a LX o de multimodo a monomodo).

En general en el diseño de cualquier instalación en la que se prevea la posibilidad de utilizar Gigabit Ethernet a distancias de más de 200 m se deberían analizar en detalle las características de la fibra a emplear y las distancias a cubrir, y considerar la posibilidad de emplear fibra de 50/125, que tiene un mayor ancho de banda y por tanto mayor alcance (ver por ejemplo Tabla 4), Desgraciadamente la fibra 50/125 tiene como ya hemos comentado un menor alcance en 10BASE-FL y 100BASE-FX, por lo que su instalación puede comprometer en algún caso el funcionamiento en entornos donde haya también Ethernet o Fast Ethernet. En cableado entre edificios se debería considerar, además de fibra multimodo, el tendido de fibra monomodo, ya que nos permitirá distancias de hasta 5 Km en segunda ventana 10.





Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

A %d blogueros les gusta esto: